DESIGN, AUTOMATION & TEST IN EUROPE

14 — 15 March 2022 - on-site event
16 — 23 March 2022 - online event

The European Event for Electronic
System Design & Test

PREFENDER: A Prefetching Defender against
Cache Side Channel Attacks as A Pretender

Luyi Li T, Jiayi Huang*, Lang Feng ", Zhongfeng Wang '
TNanjing University

*University of California, Santa Barbara

I. Motivation
[I. Background

[II. PREFENDER Design

IV. Experimental Evaluation

Motivation

* More and more complex devices expose them to larger attack surfaces
* Cloud computing, [oT, etc. &

* Increasing threat of cache side channel attacks
* Vulnerabilities in hardware design: Spectre, Meltdown, Foreshadow, etc.

v @ G

SPECTRE FORESHADOW
* Urgent to defeat them effectively and efficiently

Motivation

* Related work

* Cache isolation: DAWG from MICRO2018
Limit speculation: Conditional Speculation from HPCA19
Stateless speculative buffer: InvisiSpec from MICR0O2018
* Noise injection: Reuse-trap from DAC2020

* Trade-off between security and performance in existing methods

VS, / /\

* Can we both enforce security and increase performance?
* Insight: Effective prefetching can both defend against attacks and save execution time.

. Motivation

II. Background

® C(Cache Side Channel Attack
® Threat Model
® Prefetching

[II. PREFENDER Design

IV. Experimental Evaluation

Cache Side Channel Attack

e Side channel attack is to extract secrets from information
inadvertently leaked by a system
* Time, Cache, Power, Electromagnetic, etc.

* Cache side channel attack
* Victim leaves side channels in the cache while running.
 Attacker exploits the cache side channels to extract secrets.

Phase 1 : The attacker Phase 2 : The victim Phase 3 : The attacker
initialize.s N ‘ accesses the cache and ‘ measures the change to
' changes the cache state. extract the victim’s secret.

e.g. A typical attack flow 6

Threat Model

* Cache timing side channel attack
» Attacker measures the cacheline access latency in phase 3
e Flush+Reload, Evict+Reload, Prime+Probe, etc.

* Example: Flush + Reload

* Shared memory between attacker and victim
* Instruction support for cache flush

Shared data

|

Cache

Threat Model

* Cache timing side channel attack
» Attacker measures the cacheline access latency in phase 3
e Flush+Reload, Evict+Reload, Prime+Probe, etc.

* Example: Flush + Reload

» Step1: Attacker flushes the shared memory from cache

Eviction cacheline:
cachelines that may be

accessed by the victim

Cache

Threat Model

* Cache timing side channel attack
» Attacker measures the cacheline access latency in phase 3
e Flush+Reload, Evict+Reload, Prime+Probe, etc.

* Example: Flush + Reload

« Step1: Attacker flushes the shared memory from cache
* Step2: Victim accesses/does not access the shared memory

Cache

Shared data

Threat Model

* Cache timing side channel attack
» Attacker measures the cacheline access latency in phase 3
e Flush+Reload, Evict+Reload, Prime+Probe, etc.

* Example: Flush + Reload
« Step1: Attacker flushes the shared memory from cache
» Step2: Victim accesses/does not access the shared memory
» Step3: Attacker re-accesses the shared memory
 Cache hit -> victim accessed
* Cache miss -> victim did not access

Cache

10

Example: Spectre v1

0:
1:
2: 1 @ finishes and leaves a cache

if (x < arrayl_size) { Secret is brought to cache
y = array2[arrayl[x] * 512]; before the bound check

side channel !
e.g. A victim code snippet

Attacker maliciously trains branch predictor to assume ‘ if ’is likely true.

Speculative execution allows instructions to be speculatively executed
before the branch target is determined.

Attacker invokes code with an out-of-bounds x.
 x = (address of a secret byte to read) — (base address of array1).

11

Example: Spectre v1

8: if (x < arrayl_size) { Secret is brought to cache
1: y = array2[arrayl[x] * 512]; .b.efore the bound check
2: 1} finishes and leaves a cache
' JG) -
Z side channel !

e.g. A victim code snippet

 Use cache side channel attack to extract the secret
0*512
1*512
2*%512
3*%512
-

Attacker Victim Attacker

Flush Access || Reload

—)

4—

aammll Cache Hit!
h .
PEEEN Sccretis 3!

n*512

array2 array2 array2 array2

e.g. A Flush+Reload example 12

Prefetching

* To reduce cache miss rate and improve performance
* Prefetch data into cache before the processor requests it.
* Hardware prefetchers: Next-line Prefetcher, Stride Prefetcher; etc.

load rl1, Ox0000_0000
load r2, 0x0000_0010

load r3, 0x0000_0020

exth

0x0000_0000

0x0000_0010

0x0000_0020

Stride
Prefetching

i A W N RBP O

Cache

Main Memory
13

I. Motivation

[I. Background

III. PREFENDER Design

Design Insight
Architecture Overview
Data Scale Tracker
Access Pattern Tracker

IV. Experimental Evaluation

14

Design Insight

* Observation 1 * Observation 2
 Victim causes|only one|cache state * Prefetching can cause extra cache
change in phase 2. state changes.
« Attacker utilizes|the only one|change to * Prefetching can help enhance
extract secrets in phase 3. performance based on accurate
prediction.

Desi refetchert
Add extra state changes S)L er to

both enforce security and
improve performance?

to confuse attacker?

15

Architecture Overview

* Prefender: L1 Data Prefetcher
» Data scale tracker (DST) to interfere with phase 2
» Access pattern tracker (APT) to interfere with phase 3
» Support for basic hardware prefercher: next-line prefetcher, stride prefetcher

Da}a Core 0 Core_n-1

! o d ! ! !

) Con“Eroller L1D L1 - L1D L1I

Prefender |DST /’I I I L2 I I
Basic Pref. APT /// I

Data Scale Tracker

* Goal

* To predict the eviction cachelines during

victim’s execution
Data
* Challenge 3 T rea 0
/ e
* In phase 2, victim may only access one Controller / &
secret-dependent eviction cacheline. 1 i /| Reg_1
* Observation Prefender | DST
 Victim uses indirect memory access to : \
o : Basic Pref. A
load eviction cacheline. e APT] .| Regn

e e.g. eviction[s * 128];

»Calculation History Buffer

* To track how the load’s target address is
calculated.

17

DST - Calculation History Buffer

* To track how the load’s target address is calculated
* Record calculations related to each register

« Addition (and subtraction) and Multiplication (and shifting) fva sc

- Fixed Value (fva,) Reg 0

* Record immediate value used in the calculation Reg 1
history of register r

Reg n

 Scale (sc,)
* Record scale of target addr in register r Track sc, with the help of
e.g. 128 *i -> scaleis 128 fva, by propagating them

* To predict the cache access pattern from source registers to
destination registers.

18

Data Scale Tracker

* Example

» Victim accesses array[secret * 0x200]
* Finally, r@ = secret_addr, r5 = array + secret * 0x200

fva, SC,

r0 1: load re, 4(sp)

2: load rl1, 0(ro)
rl 3: load r2, array
2 4: load r3, 0x200

5: mul r4, rl, r3
r3 6: add r5, r4, r2

7: load r6, 0(r5)
r4
rs e.g. A victim assembly code snippet

19

Data Scale Tracker

* 1: Load secret_addr to ro

« 2: Load secret to ri
* In data movement instructions, scale is initialized to 1.

fva, SC;
r0 secret_addr NA 1 1: load ro, 4(sp)
2: load rl1, 0(ro)
rl secret NA 1 3: load r2, array
P 4: load r3, 0x200
5: mul r4, rl, r3
3 6: add r5, r4, r2
7: load r6, 0(r5)
r4
r5

e.g. A victim assembly code snippet

20

Data Scale Tracker

* 3:Load array to r2
* 4: Load 90x200 to r3

* Ifload an immediate number; set the fva,.

fva, SC,

r0 secret_addr NA 1 1: load ro, 4(sp)

2: load rl1, 0(ro)
rl secret NA 1 3: load r2, array

5: mul r4, rl, r3
r3 0x200 0x200 1 6: add r5, r4, r2

7: load r6, 0(r5)
r4
rs e.g. A victim assembly code snippet

21

Data Scale Tracker

* 5: Calculate indexr4 = rl * r3 (secret * 0x200)

* SCp4=5SCq * fvass

fva, SC,
r0 secret_addr NA 1 1: load ro, 4(sp)
2: load rl1, 0(ro)
rl secret [1 3: load r2, array
5: mul r4, rl, r3
r3 0x200 -9x20Q_ 1 6: add r5, r4, r2
N NS 3 7: load r6, O(r5)
r4 secret*0x200 NA 0x200
rs e.g. A victim assembly code snippet

22

Data Scale Tracker

 6: Calculate target address: r5 = r2 + r4 (array + secret*0x200)
 fva,,isvalid, sc.s = sc4

fva, SC,
r0 secret_addr NA 1 1: load ro, 4(sp)
2: load rl1, 0(ro)
rl secret NA ! 3: load r2, array
5: mul r4, rl, r3
r3 0x200 0x200 1 6: add r5, r2, r4
7: load r6, 0(r5)
r4 secret*0x200 . NA 0x200
X
*
r5 | array+secretox200 — 0x200 e.g. A victim assembly code snippet

23

Data Scale Tracker

« 7: Load array[secret * 0x200] to r6

* scs (0x200) > cacheline size (0x40 in the example) ! Do data prefetching!
* Candidate address: r5 + 0x200, r5 - 0x200 (prefetch data notin the cache).

r0

rl

r2

r3

r4

r5

fva, SC,
secret_addr NA 1
secret NA 1
array array 1
0x200 0x200 1
secret*0x200 NA 0x200
array+secret*ox200 NA Ox200

: load ro, 4(sp)
: load ri1, 0(re)
: load r2, array
: load r3, 0x200
: mul r4, r1, r3
: add r5, r2, r4d
: load r6, 0(r5)

Nou b wN PR

e.g. A victim assembly code snippet

24

Data Scale Tracker

* More complicated access pattern can also be handled
e 128 *i+ 32 *j+imm, (128iyi;i, + 32j, * 16j1) * (48K, + imm), etc.
* More analyses in the paper

Conditions Results
Instruction Arg.a | Arg. b | fvars, | fvars; fva,q | 8Crd
immmyg - - - immy 1
toac imd & tmm(rso) - - - NA 1
730 mmg NA - NA SCrsq
S0 mmo Valid - fvarsy +immo 1
+ T80 81 Valid Valid fvarsy + fvars, NA
adding-a b 750 rs; | NA | Vaid NA Sorag
730 81 Valid NA NA SCrsq
780 rs1 NA NA NA min(scrsg, SCrsy)
T80 immmyg NA - NA SCrsy X immg
30 mmmo Valid - fvarsy X immo 1
T T80 81 Valid Valid fvarsy X fvars, NA
mul rd @ b T80 81 NA Valld NA SCTSO X f’Uarsl
S0 s Valid NA NA fvarsy X scrs;
T80 81 NA NA NA SCrsq X SCrsy
| Otherwise || - | - | - | - [l NA | 1

Tablel: Rules to calculate fva, 4 and sc,q . 95

Access Pattern Tracker

* Goal

* To predict the access patterns of attacker
during its measurement Data

* Challenge : :

* In phase 3, attacker randomly measures = Con“Eroller /

the latency to bypass prefetcher. v ;

] P ;
e Observation seiiodier | DS |

 Random accesses are associated with only Basic Pref. APT
a few load instructions. --

Inst 0 Inst_1 Inst_n

Access Trace Buffer
> Access trace buffer

* Instruction-level granularity to detect
attacks

26

APT - Access Trace Buffer

* Instruction-level granularity to detect attacks

I
» Each buffer is associated with one load instruction Valid
InstAddr
. DiffMin
* InstAddr register i
* Record instruction address of its associated load
* Buffer entry Buffer
* Record block address accessed by the load Entry
* DiffMin register
¢ Record minimum difference between two block -
addresses among all the entries Access Trace Buffer

27

Access Pattern Tracker

* Example

* Ox8008 load: Randomly load array2[arrayl[x] * 0x200]
* Ox8018 load: Sequentially load safe_array[i]

InstAddr | 1 0x8000 0
DiffMin | 1 0x100 0

1 OxA000 o Ox8008: load ri, 0(rie)

1 OxA100 L

Ox8018: load r3, 0(rll)
1 OxA200 0

guffer__ 1 0xA300 0 R . v code s

ntry : An00 . e.g. An attacker assembly code snippet

1 . e 0

Buffer[0] (Occupied) Buffer[1] (Empty) 28

Access Pattern Tracker

« (@ Buffer allocation
* Allocate an empty buffer.

InstAddr | 1 0x8000 1 Ox8008
DiffMin | 1 0x100 0
B OxA00 0 0x8008: load ril, 0(rle)
1 OxA100 A
. Ox8018: load r3, 0(rll)
1 OxA200 0
Buffer | 7 OxA300 0
Entry
1 OxA400 0
1 9

Buffer[0] (Occupied) Buffer[1] (Occupied) 29

Access Pattern Tracker

@ Entry updating

* If notrecorded, store the block address (BlkAddr) in a new entry. 0x1000
0x2800
InstAddr | 1 0x8000 1 0x3008 0x1200
DiffMin | 1 0x100 0 1
[1 OxA000 1 0x1000 0x8008: load ri, 0(r‘l@)
1 OxA100 of 0 Tttt
Ox8018: load r3, 0(rll)
1 OxA200 0
Buffer | | 0xA300 0
Entry
1 OxA400 0 I
Nk o ° 1 Cachelines

Buffer[0] (Occupied) Buffer[1] (Occupied) ~ 0*1909 w0

Access Pattern Tracker

« (@ Buffer allocation

* Find the associated buffer and activate it. 0x1009
0x2800
InstAddr | 1 0x8000 1 Ox8008 0x1200
DiffMin | 2 0x100 0 1
[1 OxA000 1 0x1000 0x8008: load ri, 0(r‘l@)
1 OxA100 o | T
. Ox8018: load r3, 0(rll)
1 OxA200 0
Buffer | | OxA300 0
Entry
1 OxA400 0 I
1 -)

Buffer[0] (Occupied) Buffer[1] (Occupied) 31

Access Pattern Tracker

@ Entry updating

* If not recorded, store the block address (BlkAddr) in a new entry. 0x1009
« If all entries are valid, use LRU to replace. e
0x2800
InstAddr | 1 0x8000 1 0x8008 0x1200
DiffMin | 2 0x100 0 1
[1 OxA009 1 0x1000 0x8008: load ri, @(r‘10)
1 OxA100 1 ex2000 | | o trrrte
Ox8018: load r3, 0(rll)
1 OxA200 1 0x1600
Buffer | [OxA300 1 0x2800
Entry
1 OXA400 0 I I I l:|
] 1 000 %) T T T

Buffer[0] (Occupied) Buffer[1] (Occupied) Ox1600 ©x2000 0x2800

Access Pattern Tracker

« 3 DiffMin updating

* If the number valid entries reaches a threshold (4 in the example), 0x1000
calculate DiffMin. co
Ox2800
InstAddr | 1 0x8000 1 0x8008 0x1200
DiffMin | 1 0x100 1 Ox600 +
B 1 OxA000 1 0x1000 0x8008: load r'l, 0(r‘l@)
1 OxA100 il ox2000 | | Tttt
Ox8018: load r3, 0(rll)
1 OxA200 1 Ox1600
Buffer | 7 OxA300 1 0x2800
Entry
1 OXA400 0 I I I l:|
1 cen 9

Buffer[0] (Occupied) Buffer[1] (Occupied) 33

Access Pattern Tracker

« 3 DiffMin updating

* If the number valid entries surpasses a threshold (4 in the example), 9x1000

update DiffMin each time the buffer is activated.

InstAddr | 1 0x8000 1 Ox8008
DiffMin 1 0x100 1 8x6088 0Xx200

1 0xA000 1 0x1000

1 OxA100 1 0x2000

1 OxA200 1 Ox1600
Buffer | |7 OxA300 1 0x2800
Entry

1 OxA400 1 0x1200

1 50 a)

Buffer[0] (Occupied) Buffer[1] (Occupied)

0x2800
0x1200

A

Ox8008: load ri1, 0(rile)

Ox8018: load r3, 0(rll)

11

!

0x1200

34

Access Pattern Tracker

* (4 Data prefetching

* If the number valid entries surpasses a threshold, do prefetching! 0x1000
» Candidate address: BIkAddr + DiffMin, BIkAddr - Diffmin (prefetch data ce
not in the cache). Ox2800
InstAddr | 1 0x8000 1 0x3008 0x1200
DiffMin | 1 0x100 1 0x200 1
[1 OxA000 1 0x1000 0x8008: load ri, 0(r‘l@)
1 OxA100 1 ex2000 | | Tttt
Ox8018: load r3, 0(rll)
1 OxA200 1 0x1600
Buffer | | 0xA300 1 0x2800
Entry
1 OxA400 1 0x1200 - I l:|
1 oo %) T

Buffer[0] (Occupied) Buffer[1] (Occupied) ©*1000in cache! Prefetch ox14e0 .

Access Pattern Tracker

« (@ Buffer allocation
« If all buffers are occupied, use LRU to select a buffer.

InstAddr | 1 | exseee 0x8018 1 0x8008
DiffMin | © 1 0x200
0 1 Ox1000 0x8018: load r3, 0(rill)
e 1 0)(2@90 oooooo
0 1 0x1600
Buffer__ 0 1 Ox2800
Entry
0 1 0x1200
0)

Buffer[0] (Occupied) Buffer[1] (Occupied) 36

Access Pattern Tracker

* @ Entry updating
« (@ DiffMin updating

] Ox1500
* @ Data prefetching Ox1501
- DQBBD,DPRQOBDDAD 9x1502
InstAddr | 1 0x8018 1 Ox8008
DiffMin | 1 ox1 1 0x200 1
B ox1500 1 Ox1000 0x8018: load r3, 0(rll)
1 0x1501 1 ox2000 | | tttrte
1 0x1502 1 0x1600
Buffer | 7 0x1503 1 0x2800
Entry
1 Ox1504 1 0x1200
1 oo 0

Buffer[0] (Occupied) Buffer[1] (Occupied) 37

[. Motivation
[I. Background
[II. PREFENDER Design

IV. Experimental Evaluation

® Security Evaluation
® Performance Evaluation

38

Methodology

* Tools
* Gemb5 simulator

* Configuration

» System call emulation (SE) mode
* x86 03 core at 2GHz
* 32KB 2-way L1ICache, 64KB 2-way L1DCache, 2ZMB 8-way L2Cache

 Testbench

* Security: Spectre v1 (Flush+Reload, Evict+Reload, Prime+Probe)
* Performance: SPEC CPU 2006 benchmark

39

Security Evaluation

So many cache hits ...

. J
Spectre v1 (Flush + Reload) @ Which is the secret 727
SPECTRE

400

- - = Hit Threshold
Secret = ‘A’

—— Prefender - DST
Prefender - APT

— Prefender

Latency (Cycle)

50 65 70 90 110
Array Index

40

Security Evaluation

* Spectre v1 (Evict + Reload) @/ So many cache hits ...
Fail again !!!
SPECTRE

Secret = ‘A’ - - = Hit Threshold

—— Prefender - DST
Prefender - APT

Latency (Cycle)

— Prefender

50 65 70 90 110
Array Index

41

Security Evaluation
. I\ he miss ?7?
- Spectre v1 (Prime + Probe) ‘ﬁ"/
SPECTRE

200
) - - = Hit Threshold
@]
@ Base
2 —— Prefender - DST
=
3 Prefender - APT
s
~ — Prefender

0
50 65 70 90 110

Array Index

42

Performance Evaluation

 SPEC CPU 2006
* APT: 32 buffers, 8 entries

Base m Stride Prefetcher
1.2

Prefender

Prefender (With Stride Prefetcher)

* More cases in the paper

43

Cache Miss Rate Evaluation

 SPEC CPU 2006
* APT: 32 buffers, 8 entries

Base m Stride Prefetcher m Prefender = Prefender (With Stride Prefetcher)

g2 15
o
2 13
= 1.1
o .
g \
o 09
-
8 07
=
E 05 I
: |

0.3

5 5 S
’Q& (\}Qq' &(’ QS& &Q’} . Q;QQO @'@ N,QQ/ &Q c}‘b *O@& (bﬁ\b Vé%
~‘$& 9 %60 & N & &(o &’\‘& > & &
& @0» N +q} KR

* More cases in the paper 44

Hardware Resource Consumption Analysis

* Data Scale Tracker
* Assumption:
* The prefetching is performed within one page
 Page size is < 64KB, and each core has < 100 registers
* Therefore, 16 bits are enough for each fixed value (fva) and each scale (sc)
* Memory: < 16*2*100/8 Bytes, which is < 400 Bytes
* Datapath: A 16-bit adder, a 16-bit multiplier, and a 16-bit comparator

e Access Pattern Tracker

* Assumption:
* In Access Trace Buffer, each entry, InstAddr, DiffMin, and the time for LRU are 64-bit
* The target is to prefetch eviction cachelines, and the size of L1Dcache < 1MB
* Therefore, 20 bits are enough for the calculation
* There are 32 Access Trace Buffers, each of which has 8 entries

* Memory: < 64*(8+3)*32/8 Bytes, which is < 2816 Bytes

» Datapath: Several 20-bit comparators and 20-bit subtractors for each buffer 45

Conclusion

* Propose a secure prefetcher, which is able to defeat cache side channel
attacks while maintaining or even improving performance.

* Design Data Scale Tracker (DST) to predict the eviction cachelines during
the victim's execution.

* Design Access Pattern Tracker (APT) to predict the access patterns
during the attacker’s measurement.

* Prove the defense effectiveness for Spectre and achieve a speedup for
SPEC CPU 2006 benchmark.

46

Thanks for Listening!

If You Have Any Question, Please Contact Us at
luyli@smail.nju.edu.com
flang@nju.edu.cn

47

