
IEEE TRANSACTIONS ON COMPUTERS 1

RVDFI: A RISC-V Architecture with Security
Enforcement by High Performance Complete

Data-Flow Integrity
Lang Feng∗, Member, IEEE , Jiayi Huang∗, Member, IEEE , Luyi Li, Haochen Zhang,

Zhongfeng Wang†, Fellow, IEEE

Abstract—With the rapid revolution of open-source hardware, RISC-V architecture has been prevalent in both academic research and
industrial developments. Due to the increasing threats of information leakage, it is imperative to provide a secure RISC-V ecosystem to
defend against malicious software exploits. Toward this goal, data-flow integrity (DFI) is employed as a strict security policy for
enforcing the legitimacy of each data access, thereby filtering out most of the attack exploits. However, due to the intensive
computations needed by DFI, there are only limited proposals successfully implementing partial DFI with low performance overhead.
Moreover, all the previous studies failed to enforce the complete DFI policy in a real hardware platform, while trading off security
strength for performance efficiency. To provide RISC-V architecture with high security enforcement and low performance overhead, we
leverage the open-source Rocket Chip and propose RVDFI, the first complete DFI implementation based on RISC-V architecture with
only 17.8% performance overhead on average and 3.9% in minimum, incurring much less performance loss compared to the 166.3%
overhead caused by previous complete DFI implementation.

Index Terms—Data-Flow Integrity, RISC-V, Computer Architecture, Security, Rocket Chip.

✦

1 INTRODUCTION

IN recent years, the rapid open-source hardware develop-
ments have broken the barriers in semiconductor designs,

paving the way for the next waveform of computing design
and innovation. Various efforts across communities have
been made to reshape the ecosystem of open-source hard-
ware, including electronic design automation (EDA) [1], [2],
agile development methodology [3], [4], open instruction
set architecture (ISA) [5], and so on. To eliminate the access
barrier posed by commercial proprietary EDA software,
several EDA tools have been open sourced for free usage,
such as Verilog to Routing [1] and Icarus Verilog [2]. Ad-
ditionally, many artificial intelligence hardware accelerator
designs and generators have their open accesses, such as
NVDLA [6], Gemmini [3], and DNNweaver [4]. In the field
of processor design, the open RISC-V ISA [5] has been rev-
olutionizing the processor developments in both academia
and industry [7], [8], [9], [10], [11], [12].

In 2010, RISC-V [5] was designed and later became an
open ISA standard, which leads to various hardware devel-
opments, covering the fields of artificial intelligence [12],
[13], high performance computing [8], [14], cryptogra-
phy [11], etc. However, unlike other architectures, the se-
curity enforcement on RISC-V is still in its infancy. For the
world leading companies such as Intel, AMD and ARM,
their processors are equipped with security modules, such
as Intel CET [15], AMD SEV-SNP [16], and ARM Core-
Sight [17], to provide both security defense and performance
efficiency. On the security side, software programs have
become more complex and tend to expose more vulner-

∗Both authors contribute equally to this paper.
†The corresponding author.
Digital Object Identifier no. 10.1109/TC.2021.3133701

abilities for wider attack surfaces, which requires strong
protection. Although it can be defended with software
mechanisms, they usually incur considerable performance
overhead. Therefore, it is imperative to provide security
support for RISC-V to enforce security while maintaining
performance efficiency.

Data-flow integrity (DFI) is a strict security policy that
enforces the legitimacy of all the memory access instruc-
tions [18]. Since most of the software attacks need to access
at least one piece of data in the memory, DFI can be used to
identify the illegal data access. Thus, most of the software
attacks including control-data attacks [19] and non-control-
data attacks [20], [21] can be detected. However, as around
30% of the instructions in a typical software program are
memory accesses such as load and store, DFI verification
can be frequent and consume intensive resources. Due to
this difficulty, there were only a few follow-on proposals
after DFI was proposed and implemented in software in
2006 [18]. If complete DFI is defined as the DFI policy
proposed in the seminal work [18], all the previous designs
either enforce only partial DFI or incur large performance
overhead. Moreover, none of them implement the complete
DFI verification on a real hardware platform.

To mitigate the performance overhead of DFI verifica-
tion, hardware-assisted approaches have been investigated
in recent work [9], [22]. However, security strength has
been traded for performance to make the previous designs
practical. Although a recent study [23] leverages near-
memory processing (NMP) and realizes complete DFI, it
incurs high performance overhead and hardware resource
consumption. Furthermore, NMP may not be widely ac-
cessible, especially for IoT devices. In contrast, our work
explores various architectural enhancements along with the

Author’s version. 0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON COMPUTERS 2

compilation flow. The proposed enhancements realize com-
plete DFI verification without security loss with reasonable
hardware resource consumption, meanwhile achieving less
than 1

9 performance overhead compared to the software-
based complete DFI implementation.

To provide strong security protection on RISC-V, our
work proposes RVDFI, a RISC-V processor design equipped
with high security enforcement by performing DFI verifica-
tion at runtime. With DFI verification, the performance of
the proposed RISC-V processor is still comparable with an
unsecured baseline. To the best of our knowledge, RVDFI
is the first design with complete DFI enforcement and less
than 20% (17.8%) performance overhead, and is developed
based on the open-source RISC-V based Rocket Chip SoC.
In summary, the contributions of this paper are as follows:

• Architectural Support: We propose a RISC-V architec-
ture extension and instrumentation approach to trans-
mitting DFI related information and enabling DFI capa-
bility for RISC-V processors.

• Microarchitecture: A dedicated DFI verification mod-
ule is designed to provide light-weight accelerations for
the simple enforcement logic, which frees the processor
pipeline from DFI burden for useful work, thereby
reducing performance overhead.

• Enhancements: Enhancements are proposed to im-
prove the security and further reduce performance loss,
including the support for function return and library
protection, the hardware design for dynamic redundant
load pruning, and dedicated DFI caches.

• Evaluation: We evaluate the performance using SPEC
CPU2006 benchmark suite [24]. The results show that
RVDFI only incurs 17.8% performance overhead on av-
erage, which is less than 1

9 of the performance overhead
of the software-DFI [18] baseline. The security analysis
also shows that complete DFI effectively defends 156
control-data attacks generated from the RIPE suite and
two real-world non-control-data attacks. The compar-
isons with previous work show that RVDFI has high
security and low hardware resource consumption.

In the following sections, we first introduce the prelim-
inaries of DFI, RISC-V, and the thread model in Section 2.
Next, we discuss the related work in Section 3. The ba-
sic RVDFI architecture for DFI verification is proposed in
Section 4. Then, Section 5 further introduces various en-
hancements for improving security and performance. Exper-
imental results are analyzed in Section 6. Finally, Section 7
concludes this paper.

2 PRELIMINARIES

2.1 Data-Flow Integrity
Data-flow integrity (DFI) is a policy for ensuring the legit-
imacy of each data access. Since most software attacks are
based on data modification, DFI can identify a wide range
of attacks. For example, control-data attacks such as return-
oriented programming (ROP) and jump-oriented program-
ming (JOP) can be detected. A control-data attack example
is the attack to the indirect branches. Attackers may change
the indirect branches’ targets illegally, thereby making the
processor execute illegal instructions. This illegal data mod-
ification cannot pass the DFI verification, and the attacks

can be detected. Besides, non-control-data attacks such as
Hearbleed [21] and the vulnerability in Nullhttpd [20] can
also be identified by DFI verification since these attacks
are performed by illegally modifying or reading the data.
Compared with control-flow integrity (CFI) [25], which can
only protect the control-data attacks and can be bypassed
by non-control-data attacks, DFI can enforce the security of
both control and non-control-data.

To formalize DFI, given a program, each instruction is
assigned an identifier (ID). We call the instructions that can
write data to the memory the write instructions, such as the
store instruction, and the instructions that can read data
from the memory the read instructions, such as the load in-
struction. Note that the instruction here is a general concept.
Either each statement of an assembly code or a C program
can be called an instruction. When a read instruction with ID
A reads data from the memory, the data needs to be written
by one of the legal write instructions with IDs V1, V2, ...,
Vn. The set of IDs {V1, V2, ..., Vn} is called the reaching
definition set (RDSet) of instruction A. Each read instruction
has its own RDSet, which includes the IDs of all the legal
write instructions of this read instruction. The RDSet of each
read instruction is generated by the static analysis on the
program. Besides, a table that records the ID of the latest
write instruction writing to each data is needed by DFI. This
table is called reaching definition table (RDTable). Each time,
when a write instruction writes a data, RDTable needs to
be updated. When a read instruction reads a data, the latest
write instruction ID of the data is read from RDTable, and
the obtained ID is compared with each ID in the RDSet of
this read instruction. If one of the IDs in the RDSet matches,
DFI verification passes, otherwise, there is a DFI violation.

An example of DFI can be illustrated by the example
shown in Fig. 1. Assume the ID of each instruction in this
example is the line number. After static analysis, the RDSet
of instruction 8 is {6} since printf reads the data written by
instruction 6. Similarly, the RDSet of instruction 11 is {10};
The RDSet of instruction 13 is {5}; The RDSet of instruction
16 is {10, 13}. Therefore, if the variable len at line 11 is
too large, there will be a buffer overflow and data can be
illegally written by instruction 11. If so, when instruction 13
(both a write and a read instruction) is executed, the latest
write instruction writing data recorded in RDTable is 11,
which is not in {5}, and a DFI violation occurs.

1 int data[32];
2 int data2[32];
3 int data3[32];
4 ...
5 data[pos] = func(pos);
6 data2[pos2] = func(pos2);
7 for (i = 0; i < 32; i++)
8 printf("%d\n", data2[i]);
9 for (i = 0; i < 32; i++)

10 data3[i]=i;
11 memcpy(data2, data3, len);
12 for (i = 0; i < len2; i++) {
13 data3[i] = data[i];
14 }
15 for (i = 0;i < 32; i++)
16 printf("%d\n", data3[i]);

Fig. 1. The code example for illustrating DFI.

2.2 RISC-V Architecture and Motivation
Our design RVDFI is based on an open-source RISC-V
based SoC—Rocket Chip [7]. However, the key idea of

IEEE TRANSACTIONS ON COMPUTERS 3

our design can be easily applied to other processors. The
core architecture of Rocket Chip, which is called Rocket
tile, is shown in Fig. 2. It is an in-order processor with
a 5-stage pipeline, where IF, ID, EX, MEM, WB stand for
“instruction fetch”, “instruction decode”, “execute”, “mem-
ory access”, and “writeback”, respectively. Besides, Icache
and Dcache represent instruction cache and data cache,
respectively. Different from a typical processor, Rocket Chip
contains a Rocket Custom Coprocessor (RoCC), which can
be customized with specific functions and controlled by
customized instructions provided by the Rocket Chip.

DcacheIcache

Core R
o
C
CMEM WBEXIDIF

Fig. 2. The architecture of Rocket tile.

For software-DFI [18], general-purpose machine instruc-
tions are used for DFI verification, including storing/load-
ing/searching RDTable and DFI checking, which checks
if the latest write instruction’s ID is in the RDSet or not.
Previous study [23] revealed that most of the performance
overhead is caused by DFI checking, which contains many
comparison instructions and branch instructions. Motivated
by this, we allocate the checking tasks from the processor
core to a dedicated hardware module. This can release the
computation resources required by DFI checking from the
core. The dedicated hardware module needs to have three
functions: It can communicate with the core to monitor the
executed and committed instructions, it can access the mem-
ory to access RDTable and RDSet, and it can be customized
to perform DFI verification. Therefore, RoCC is leveraged
since it perfectly satisfies the architectural requirements.

2.3 Threat Model and Assumptions

In this paper, we address memory corruption based at-
tacks. Therefore, we follow the typical threat model of most
related work. We assume the software may have one or
more vulnerabilities that can be exploited to attack the
system through data alteration. Once the attack succeeds,
the attacker would be able to read and write any mem-
ory locations in the system. This would allow attackers to
perform different measurements or take various actions,
which is not limited to any certain types as this capability
empowers many attack vectors. The vulnerabilities can be
from different places, including operating system kernel,
hypervisor, library code, user programs and so on. As long
as the binary is generated by the DFI software analysis
and compilation workflow, it would be DFI-capable, and
thereby under the protection of RVDFI. As a hardware-
based solution, we assume the hardware is trusted and bug
free. So attacks that exploit hardware vulnerabilities, such as
rowhammer [26] attack and cache side-channel attacks [27],
are out of scope. These attacks can be mitigated by other
hardware-based protection techniques [28], [29].

As DFI is a hybrid approach involving both static soft-
ware analysis and runtime protection, RVDFI requires the
software analysis to assign the instruction IDs and generate
the data-flow graph (RDSets) of a program. In addition,
since RVDFI extends the instruction set to embed DFI capa-
bility, it also needs compilation support for code generation.
We assume the DFI software toolchain is also trustworthy
and bug free.

3 PREVIOUS WORK

3.1 RISC-V Architecture

Along with RISC-V [5] developments, coherent RISC-V
based system-on-chip (SoC) generators such as Rocket
Chip [7] and BlackParrot [30] have been proposed to foster
agile RISC-V designs. Recently, several SoC prototypes have
been designed with agile development methodology by
leveraging the open-source RISC-V ecosystem [8], [14]. For
example, Celerity [14] features five general-purpose Rocket
cores for controlling a massively parallel 496-core tiled
manycore array and ten ultra-low-power cores to achieve
both performance and energy efficiency. HammerBlade [8]
is another highly programmable and energy efficient many-
core RISC-V fabric for accelerating mixed sparse/dense
computation through heterogeneity. Besides, RISC-V archi-
tecture has been employed to accelerate machine learn-
ing workloads. A RISC-V based multicore scheduling ap-
proach [13] was proposed for accelerating deep neural net-
works. XpulpNN [12] is also based on RISC-V and extends
the ISA to realize low bitwidth quantized neural networks
with low power consumption. In addition, RISC-V is also
leveraged for post-quantum cryptography (PQC) such as
RISQ-V [11]. In the security field, defense mechanisms
have been developed and demonstrated based on RISC-V,
such as hardware-assisted data-flow isolation (HDFI) [9],
tagged memory supported data-flow integrity (TMDFI) [22],
which will be described in detail shortly. Meanwhile, RISC-
V is also widely used in industrial developments, such as
NVIDIA Falcon controller [10] and Google RISCV-DV [31]
instruction generator.

3.2 DFI Variants

There have been few proposals that follow up DFI to
reduce its performance overhead while lowering its crite-
ria with partial DFI [9], [32], [33]. Instead of maintaining
the full data-flow, write integrity testing (WIT) ensures
that each object can only be modified by particular write
instructions [32]. However, since WIT only enforces the
integrity of write instructions, an unsafe read instruction
can read more bytes than the programmer’s intention, and
consequently lead to information leakage. Attacks such as
Heartbleed [21] can bypass WIT. In contrast, RVDFI can
defend against it since DFI enforces the integrity of both
read and write instructions. Song et al. proposed an access
control system Kenali with DFI [33]. But it only applies
to the operating system kernel, leaving a wide surface in
user code and data for exploits. The most recent work PIM-
DFI [23] leverages near-memory processing (NMP) for DFI
verification offloading. However, it incurs an average of
36.4% performance overhead, which is 1× more than RVDFI.

IEEE TRANSACTIONS ON COMPUTERS 4

Moreover, PIM-DFI requires NMP, 238,333 LUTs and 39,994
FFs when implementing on the same platform as RVDFI,
which is a magnitude more hardware resources than RVDFI.
Another example is hardware-assisted data-flow isolation
(HDFI) [9]. Similar to DFI policy, the policy enforced by
HDFI also requires the data read by each instruction can
only be written by certain instructions. However, HDFI
only separates the memory into two regions, which are
sensitive and non-sensitive. In contrast, the complete DFI
enforced by RVDFI uses 16-bit IDs, which is enough for even
large software programs [18], with much finer granularity
and thus, higher security. The weakness of HDFI has been
discussed in prior work [23], which shows that some attacks
that are missed by HDFI can be detected by the complete
DFI policy. Consequently, RVDFI is 32768× finer-grained
than HDFI. Similarly, tagged memory supported data-flow
integrity (TMDFI) [22] also has low granularity, since it only
uses 8 bits for the ID and only supports 256 different IDs.
As shown in [23], for a typical program, such as the bench-
mark in SPEC CPU2006, it needs more than 1000 or even
10000 IDs, which is orders of magnitude of what TMDFI
can provide. Therefore, RVDFI is 256× finer-grained than
TMDFI. Moreover, TMDFI has more than 39% performance
overhead, which is 2× as RVDFI.

3.3 Control-Flow Integrity
Control-flow integrity (CFI) [25] is another security policy
different from DFI. CFI enforces the legitimacy of each tran-
sition between the instruction sequences. For example, CFI
requires that each branch instruction in a program should
only jump to one of the legal targets generated by static anal-
ysis. CFI was first proposed with a software implementa-
tion [25], and later assisted with hardware approaches [34],
[35] to reduce the performance overhead. Intel proposed
control-flow enforcement technology (CET) [15] to enforce
CFI, which is a coarse-grained implementation compared to
Griffin [34]. Griffin is a CFI design that uses Intel Processor
Tracing to generate control-flow traces, which is used for
CFI verification in software. Lee et al. [35] has proposed us-
ing ARM Program Trace Macrocell to generate the control-
flow traces, which are sent to an FPGA through ARM Trace
Port Interface Unit for CFI verification. In comparison, CFI is
able to detect control-data attacks but not non-control-data
attacks, while DFI can identify both types of attacks [18].

3.4 Hardware-based Memory Protection
To reduce the high overhead of software memory protection
mechanisms, several hardware-based approaches have been
proposed [36], [37], [38], [39]. CHERI [36] uses a one-bit
tag to indicate whether a memory address stores a valid
capability, where 256 bits are used to describe the capability
of the stored fat pointer, which can be used for bounds
checking. A recent study has shown that CHERI fails to
protect intra-object data since the bounds checking is in
coarse object granularity [40]. Recently, BOGO [37] leverages
memory protection extension (MPX) to provide temporal
memory safety in addition to MPX’s spatial memory safety.
AOS [38] is a low-overhead always-on hardware-assisted
approach to protecting heap memory safety with bounds
checking, which leaves the stack data an attack surface. All

the above approaches focus on pointers for coarse-grained
bounds checking, which are limited for fine-grained data
protection such as generic and intra-object data. Therefore,
they fall short in fine-grained data protection compared
to RVDFI that provides instruction-level data access con-
trol, covering all data accesses. PHMon is a programmable
hardware monitor that can implement different security
policies [39]. Despite its flexibility, its generality can incur
high overhead for simple checks and miss the opportunities
of runtime optimizations offered by RVDFI, which is critical
to achieve significant overhead reduction. In contrast to
the above solutions, RVDFI provides both fine-grained data
protection and low runtime overhead through a complete
DFI implementation on RISC-V architecture.

4 BASIC RVDFI ARCHITECTURE

In this section, we introduce the basic RVDFI architecture.
The overall DFI verification flow is first presented. Then,
two important aspects are described, which are the static
analysis for facilitating runtime DFI verification, and the
DFI-related information transmission between the processor
core and RoCC.

4.1 DFI Verification Flow

The overview of the basic RVDFI architecture and the DFI
verification flow is shown in Fig. 3, where the DFI verifica-
tion is performed in RoCC and managed by the proposed
DFI controller. The software program that needs to be veri-
fied by DFI is called the target program. The verification flow
is separated into offline and online parts. In the offline part,
the target program is analyzed and instrumented during the
compilation flow. For the online part, the DFI verification
is performed to check the execution of the target program
at runtime. During the execution of the target program,
when a memory instruction that needs to be verified is
committed, a DFI-request is raised by the core and sent to the
DFI controller for verification. The instruction that initiates
the DFI-request is called the corresponding instruction of this
DFI-request. RoCC stalls the core once a new DFI-request is
raised but RoCC is busy. “Other” in Fig. 3 stands for all the
other signals needed by RoCC to complete DFI verification.
The circled numbers in Fig. 3 show the steps for the DFI
verification flow, which is described as follows (0 is not
shown in the figure):

Static Analysis

Code Generation

Target Program

IDs

Storage

Offline

Target Program

RDSets

DcacheIcache

Target Program
RDSets RDTable

Memory

Online

①

②

③

④

Core

RoCC

DFI

Controller

Stall
⑤

DFI-Request

Other
MEM WBEXIDIF

Fig. 3. The DFI verification flow for the basic RVDFI system.

0 The operating system (OS) is modified to reserve a part
of physical memory dedicated for RDSets and RDTable.

IEEE TRANSACTIONS ON COMPUTERS 5

The core can check access bounds to ensure no user
instruction can write to the reserved memory.

1 Given the source code of the target program, static
analysis is performed to assign an ID for each memory
instruction and generate the RDSet for each of them.

2 The target program is instrumented for sending DFI-
requests and related information to RoCC through its
customized instruction.

3 When the target program is loaded by the OS, its
RDSets are also loaded into the memory.

4 The instructions of the target program are executed
on the core, and DFI-requests are raised by memory
instructions at the commit stage and sent to RoCC at
runtime.

5 During the execution of the target program, when a
DFI-request is raised, the DFI controller checks the ID
(A), type (write/read) and the target address (Taddr)
of the corresponding instruction. If the type is write,
the DFI controller updates the RDTable to record that
the latest instruction writing to Taddr is A. Otherwise,
if the type is read, the DFI controller first reads the
ID (B) of the latest instruction writing to Taddr from
the RDTable. Then, the DFI controller reads instruction
A’s RDSet, and checks if B is in the RDSet. If so, DFI
verification passes, otherwise, a violation is detected
and an exception is raised.

Therefore, RVDFI is able to enforce DFI at runtime by
following the above verification flow.

4.2 Static Analysis and RDSets/RDTable Formats

To facilitate DFI verification of a target program, we use
the LLVM [41] compiler infrastructure and the LLVM-based
static value-flow analysis (SVF) framework [42] to generate
the RDSets through static analysis. First, LLVM [41] is used
to compile the target program into the intermediate repre-
sentation (IR) code. Then we apply Andersen’s algorithm
(field-sensitive, context- and flow-insensitive) to perform
the static analysis on the IR and generate the def-use chains,
based on which the RDSet for each read instruction is
generated. The RDSet of a read instruction (use) consists
of all the write instructions (def s) of the variables that can
flow to it. The same RDSets are used in both the software-
DFI [18] baseline and RVDFI. Note that the main focus of
this work is to reduce DFI performance overhead given the
static analysis results. More precise static analysis is beyond
our scope and we leave it for future exploration.

36 39
35 36

0 5

...

3 4

...

7 9

0 1 2 6
7 8 3 1

0x2400

0x2420

0x2428

0x2500

0x2548
0x2550

RDSmap

RDSets

Fig. 4. An example of finding a RDSet using RDSmap.

The RDSets are loaded into the memory when the target
program is loaded by the OS upon execution. Since the
RDSets have variable sizes, a fixed RDSet size needs to

support the largest set and can create significant memory
fragmentation. Instead, we adopt an indirect access ap-
proach via a RDSmap, whose size is the same as the number
of load instruction IDs. Each 64-bit RDSmap entry records
the corresponding load ID’s RDSet bounds in the RDSet
memory region, where the higher and lower 32 bits are used
for the higher and lower bounds of the RDSet in the RDSets
region, respectively. Fig. 4 shows an example of finding an
RDSet using the RDSmap. Suppose the RDSmap starts at
address 0x2400, and the load ID is 5, whose RDSet bounds
are stored at the sixth entry of RDSmap at address 0x2428
(0x2400+8×5). The entry tells that the RDSet of the load
instruction is the 36th – 38th IDs in RDSets, that is {0,1,2}.
Same as RDSets, RDSmap is also static information and
generated at compile time.

Similar to the .data and .text sections, RDSmap and
RDSets can also be lowered to the binary as .rdsmap and
.rdsets sections that can be loaded into the memory during
program loading time. In our evaluation, we store them in a
file and load them to a dedicated memory region before the
program starts.

For RDTable, it is maintained in the physical memory
and each memory location of the remaining physical mem-
ory has a corresponding table entry. When one page is
shared by multiple processes, the shared page should be
read-only, and the corresponding entries in the RDTable
will not be updated. When a shared page is about to be
written, copy-on-write in OS will copy the shared page to
a new physical page and assign it to the writer process.
The new physical page corresponds to a different region
in the RDTable, so there is no conflict between processes.
Similar to the seminal complete DFI implementation [18],
the data can be 4-byte aligned. Therefore, the n-th entry
of the RDTable can record the ID of the latest instruction
writing to the physical target address n << 2. Since each ID
costs 16 bits, in this case, if the size of the physical memory is
N , the RDTable size is N

4 × 2 = N
2 . Similarly, if the data is 8-

byte aligned, the RDTable size is N
4 . Note that the RDTable

cannot be tampered with by user programs, but it can be
updated by the proposed DFI controller.

4.3 Information Transmission and Instrumentation
Since DFI verification is performed in RoCC, all the informa-
tion related to DFI needs to be provided to RoCC. According
to Section 2.1, to verify DFI of a memory instruction in
a target program, a DFI-request is issued by the core and
the following pieces of information of the corresponding
instruction are needed:

• Iid: The ID of the corresponding instruction, which
is static information only related to the corresponding
instruction itself.

• Itype: The type (write/read) of the corresponding in-
struction, which is also static information.

• Itaddr: The target address of the corresponding instruc-
tion, which is dynamic information and can only be
obtained from the core when the write/read instruction
is executed and committed.

• Iwid: The ID of the latest write instruction writing the
data that is read by the corresponding instruction, if the
corresponding instruction is a read instruction. This is
also dynamic information.

IEEE TRANSACTIONS ON COMPUTERS 6

• Irds: The RDSet of the corresponding instruction, if the
corresponding instruction is a read instruction. This
is static information generated at compile time and
retrieved by the RoCC at runtime.

4.3.1 Transmitting Iid and Itype
For Iid and Itype, 16 bits are enough for encoding the ID of
each instruction with the offline optimization for reducing
the number of IDs [18], so Iid and Itype only need 17 bits
to be encoded, with 16 bits for Iid and 1 bit for Itype.
Due to the small size and static nature of Iid and Itype,
instead of storing Iid and Itype in the memory, we can
encode them along with the corresponding instruction. We
implement it by leveraging one of the RISC-V’s customized
instructions: custom0, which can be used to control RoCC.
When a custom0 finishes execution in the core’s pipeline and
retires, its instruction body is sent to RoCC by the core. We
directly instrument a custom0 right after each write/read
instruction, and use the body of custom0 to encode Iid and
Itype as the extended additional bits.

We adjust the format of custom0 to encode Iid and Itype
in the instruction body. The original format is shown in
Fig. 5. For the white row in Fig. 5, funct7 is a 7-bit indicator
whose meaning can be freely defined by the designers.
RoCC can write any data back to the destination register rd
if xd is 1. Besides, rs1 and rs2 are the source registers, and
the core can pass the data in rs1/rs2 to RoCC if xs1/xs2 is
1, respectively. We change the format of custom0 as the gray
row in Fig. 5, by leveraging funct7, rd, rs1 and rs2 to encode
Iid and Itype. The reason why we skip leveraging xd, xs1
and xs2 is that there are some constraints for their values,
so they cannot be arbitrary values as DFI may require.

31

funct7 rs2 rs1 xd xs1 xs2 rd opcode

ID[14:5] 0 0 0 ID[4:0] opcode

25 24 20 19 15 14 13 12 11 7 6 0

31 25 24 15 14 13 12 11 7 6 02627

ID[15]0 type

Fig. 5. The original/new (white/gray) format of custom0 instruction.

Since the static analysis of our work is based on LLVM
IR, the only write/read instruction is store/load. A pseudo
code example of the instrumentation can be found in Fig. 6,
where the code at line 2/4 stands for store/load data
to/from address 0x90/0x70, respectively. In Fig. 6, right
after each store and load, a custom0 is instrumented. The
instrumentation of store is named Inmet St, while that of
load is named Inmet Ld. We call the instruction, which relates
to a custom0, the corresponding instruction of the custom0. For
example, the store instruction at line 2 is the corresponding
instruction of the custom0 at line 3. When RoCC receives the
body of a custom0, a DFI-request is raised by the core for
DFI verification.

1 ...
2 st a2 (0x90)
3 custom0 (Inmet St, with the ID and the type "store")
4 ld a0 (0x70)
5 custom0 (Inmet Ld, with the ID and the type "load")
6 ld a1 (0x80)
7 custom0 (Inmet Ld, with the ID and the type "load")
8 ...

Fig. 6. A pseudo code example of the instrumentation for getting Iid,
Itype and Itaddr.

By adding Inmet St and Inmet Ld, when custom0 is
committed and its body is transmitted to RoCC, RoCC can

get the ID (Iid) and the type (Itype) of the latest committed
store or load.

An alternative approach to transmitting Iid and Itype is
to encode them along with each write/read instruction. This
may require expanded instruction-length encoding, which
we leave for future work.

4.3.2 Transmitting Itaddr
For information Itaddr, it can be obtained at MEM stage
while executing a store/load, since Itaddr is used to access
Dcache for the data. However, according to Inmet St and
Inmet Ld, the moment of a store/load accessing the data
is before a custom0 reaches RoCC. Therefore, when RoCC
receives Iid and Itype by receiving custom0 from the core,
RoCC needs to be able to obtain the target address (Itaddr)
of the latest store/load that is right before the custom0. To
realize this, we make the architecture change as shown in
Fig. 7 to pass the Itaddr along the CPU pipeline.

Dcache

Core

0x70

...

1:ld a0 0x702:custom0

2:custom0

2:custom0

DFI Controller

ID, type

3:ld a1 0x80

0x70

Tar Addr

Buffer

1:ld a0 0x70

0x80 0x70

0x80

3:ld a1 0x80

3:ld a1 0x80

0x70

1

2

3

4

1
2
3

4

RoCC

Stall

Icache

DFI-

Request

MEM WBEX

Fig. 7. The modified Rocket Chip and the example for transmitting Itype.

In Fig. 7, two pipeline registers are added to pass the
target address from the MEM stage to the commit stage,
then the target address is transmitted to RoCC. A target ad-
dress buffer is added inside RoCC to record the latest target
address. With the two registers and the target address buffer,
it is ensured that the target address of the corresponding
instruction and the custom0 are synchronized and can reach
the DFI controller at the same time. An example is also
shown in Fig. 7, where the red numbers stand for the clock
cycles, and the vertical dotted lines are for separating the
stages. The numbers at the bottom of Fig. 7 are the target
addresses. The executing code is the lines 4-6 in Fig. 6. It
is shown that when the custom0 reaches RoCC at cycle 4,
the DFI controller is also able to fetch the target address
of the corresponding ld a0 0x70 from the target address
buffer. With this modification and instrumentation, RoCC
can obtain the correct target address of the latest memory
access instruction before custom0.

4.3.3 Transmitting Iwid and Irds
For information Iwid, as described in Section 2.1, it is stored
in the RDTable and the RDTable is initially empty. The
RDTable is updated when a new memory write instruction
is committed. As discussed in Section 4.2, RDTable is stored
in the memory. RoCC has the memory interface to Dcache,
and thus, can access the RDTable. For information Irds, it is

IEEE TRANSACTIONS ON COMPUTERS 7

generated through the offline static analysis on the target
program, and loaded into the memory before the target
program starts. Therefore, RoCC can access Irds from the
memory while performing DFI verification.

5 ENHANCEMENTS ON RVDFI SYSTEM

Although the basic RVDFI architecture moves the computa-
tion of DFI verification from the core to RoCC and relieves
the large performance overhead, the performance loss is still
not negligible. When there is a new DFI-request, if RoCC is
performing DFI verification of the previous DFI-request, the
core has to be stalled until the previous DFI verification is
finished. Otherwise, the new DFI-request would be missed
if the core proceeds with execution, and security would be
reduced. To mitigate this problem, we can either temporarily
store the DFI-requests to avoid stalling, or increase the speed
of the DFI verification performed in RoCC. Besides the
performance, the security of the basic RVDFI architecture
can also be improved by supporting function return and
dynamically linked libraries.

We proposed several approaches to further enhancing
the RVDFI architecture for supporting complete DFI veri-
fication with better performance efficiency. The enhanced
RVDFI is shown in Fig. 8, with the additional connections
between the registers in the core and RoCC, a FIFO, a load
pruning buffer, and a few dedicated DFI caches. The details
are introduced in the following subsections.

Dcache

Core

DFI Controller

Tar Addr

Buffer

...

RoCC

Stall

ID, type

Lib Tar Addrs, Lib Length

Tar Addr RDTable Cache

Regs
RDSmap Cache

RDSet Cache

FIFO
sp a0 a1 a2 ...sp a0 a1 a2 ...

... MEM WB

Load

Pruning

Buffer

Fig. 8. The modified Rocket Chip for DFI verification with the enhance-
ments, which is the final version of RVDFI.

5.1 Supporting Function Return and Library

As described in Section 4.2, the static analysis and in-
strumentation are performed based on the LLVM IR. For
function return and library function call, they both contain
memory accesses. However, these memory accesses are usu-
ally implicit in the IR without explicit load or store avail-
able. Therefore, the proposed instrumentation in Section 4.3
cannot protect function returns and library function calls.

We further augment the instrumentation technique and
the Rocket Chip architecture to support the DFI verification
for function returns and libraries. Although previous works
such as [18], [23] also support this, we propose an alternative
approach with a more efficient design for RISC-V architec-
tures to achieve less instruction instrumentation.

5.1.1 Function Return Protection
There are two instructions related to function return protec-
tion, which are calls and rets. When a call is executed, the
return address of the function being called is written on the

stack. When ret is executed, the return address is read from
the stack and the program counter of the core is changed to
the return address. DFI requires that the return address of
a function can only be written by the function call that calls
this function. To enforce this policy, the memory address of
the return address needs to be obtained by RoCC when each
call and each ret are executed.

For RISC-V, the memory address of the return address is
related to sp, which is the stack pointer register. After each
function is called, there are 5 steps before it returns:

1) The call is executed.
2) The return address is stored at sp-4, and the value of sp

is decreased to enlarge the stack.
3) The instructions in the function body are executed.
4) The value of sp is increased to change the size of the

stack back to that before this function is called, and the
return address at sp-4 is read by the core.

5) The ret is executed.
In this case, right before step 1 and right before step 5, RoCC
needs to obtain sp-4, which is the memory address where
the return address is stored.

To transmit Iid and Itype, and inform RoCC of obtaining
the memory address of the return address right before step 1
and 5, we instrument the target program with an additional
custom0 right before each call (Inmet Call) and ret (Inmet
Ret). When RoCC receives Inmet Call and Inmet Ret, it
obtains sp-4 immediately, which is the target address of
implicit store and load, respectively.

When RoCC receives an Inmet Call, it updates the
RDTable entry according to the address sp-4 with a special
ID, -1, which is specifically used for function calls. When
RoCC receives Inmet Ret, it reads from the RDTable entry
according to the address sp-4, and checks if the data is
-1. If so, DFI verification passes. If another illegal store
writes data to the return address at sp-4, RoCC updates
the corresponding entry of RDTable from -1 to the ID of
the store. In this case, DFI verification would fail when the
function returns.

5.1.2 Library Protection

For a typical program, there may exist multiple dynamically
linked library functions, such as memcpy, memset, etc. Usu-
ally the instructions of dynamically linked library functions
are not analyzed during static analysis. However, many
attacks can happen in libraries such as libc library [43].
Therefore, it is essential to also enforce DFI for library
functions. For each library function, the information of the
pointer arguments including their memory operation types,
the target addresses and the associated memory range that
may be accessed, is used during static analysis. This infor-
mation can also be propagated to the hardware through an
extended custom0 with a new encoding. This new custom0
is instrumented right before each library function call, after
function arguments are loaded into registers (Inmet Lib).
The custom0 of Inmet Lib can specify if the library function
writes/reads data to/from the memory, the memory access
range. When RoCC receives a DFI-request of Inmet Lib, the
DFI controller fetches the needed arguments and performs
DFI enforcement by verifying the definition IDs of all the
memory locations that are pointed by the read pointer

IEEE TRANSACTIONS ON COMPUTERS 8

and its range is in the RDSet of the call instruction. This
procedure is similar to checking n loads for a memory range
of n. Similarly, the RDTable entries of the write pointer and
its memory range are updated with the ID of the current
call. Note that when a library function needs to load data,
sometimes the memory access range can be huge, which
may lead to long detection latency. To avoid the core from
executing instruction streams that may contain attacks in
this detection window, RoCC stalls the core when it begins
to process a DFI-request corresponding to a library function
that loads data, until this DFI-request is processed.

For complicated library functions, especially system
calls, they can be supported similar to the kernel DFI ap-
proach in Kenali [33], which is out of the scope of this work.

5.1.3 Instrumentation and Architecture Enhancements
To support both function return and library protections, we
further extend the custom0 instruction in Fig. 5, and the
encoding format is shown in Fig. 9, where the white row
is for store and load instrumentation, and the gray row
is for function return and library call protections. Whether
the format is Inmet St or Ld and Inmet Call, Ret or Lib is
decided by the 3rd most significant bit (0 for St/Ld and 1
for Call/Ret/Lib). In Fig. 9, ”r”, ”w”, ”ret” represent if the
corresponding instruction reads data, writes data, and is a
function return or not, respectively.

ID[14:5] 0 0 0 ID[4:0] opcodeID[15]0 retw1

ID[14:5] 0 0 0 ID[4:0] opcodeID[15]0 type

31 25 24 15 14 13 12 11 7 6 02627

31 25 24 15 14 13 12 11 7 6 02627282930

r

Fig. 9. The format of new custom0 instruction (gray) for function return
and library protection.

An instrumentation example for function returns and
libraries is shown in Fig. 10. Inmet Call and Inmet Lib
should be right before the call, while Inmet Ret should be
right before the ret, according to the instrumentation policy.

1 def func() {
2 ...
3 add sp,sp,0x80
4 custom0 (Inmet Ret)
5 ret
6 }
7 def func2() {
8 ...
9 ld a0 8(sp)

10 add a1,a4,6
11 ld a2 64(sp)
12 custom0 (Inmet Lib)
13 call memcpy
14 custom0 (Inmet Call)
15 call func
16 ld a0 (0x70)
17 custom0 (Inmet Ld)
18 st a2 (0x90)
19 custom0 (Inmet St)
20 ...
21 }

Fig. 10. A pseudo code example of the instrumentation for enabling DFI
verification for function returns and libraries.

Besides, Rocket Chip is further modified to support
function return and library protections in Fig. 8. Since the
arguments of a library function call are stored in the
registers starting from a0, the values of sp, a0, a1, a2, and
other successive registers are passed to RoCC and RoCC
fetches the values of these registers upon receiving a custom0
of Inmet Call, Ret, and Lib.

5.2 DFI-Request FIFO
As described in Section 4.1, the major cause for performance
overhead is due to core stalling if it raises a new DFI-
request while RoCC is busy with the previous DFI-request.
Although dropping the new request can avoid stalling the
core, the security can be compromised. Since RoCC may be
idle during the processor computation phase when there are
no memory instructions for DFI verification, it can result in
a free time slack. Based on this, we introduce a FIFO inside
RoCC to store the incoming DFI-requests, and send them to
the DFI controller if it is free. Once the FIFO is full, the core
is stalled. The FIFO is not only for temporarily avoiding
stalling the core when there is a new DFI-request; more
importantly, it also enables a DFI-request to use the free
time slacks. This can further reduce the chance of stalling
the core and increase the DFI controller utilization, thereby
reducing the performance overhead.

5.3 Dynamic Redundant Load Pruning Buffer
In the seminal software-DFI work [18], offline optimizations
for pruning redundant DFI verification were proposed to
reduce the performance overhead. However, these offline
optimizations are conservative due to static analysis. With-
out the runtime information, they lose the opportunities of
pruning for further reducing performance loss. Although
previous work PIM-DFI [23] has suggested the runtime
optimizations, its optimization implementations incur sig-
nificant area overhead, as shown in the result analysis in
Section 6.6. In RVDFI, besides implementing all the offline
optimizations in work [18] during static analysis, we also
propose a light-weight hardware design named load prun-
ing buffer for dynamic redundant load pruning, to further
prune the redundant DFI-requests of Inmet Ld at runtime.

ID
Target

Address

0x7c 0x15
0x7c 0x15
0x24 0x54

0x7c 0x15
0x24 0x54
0x7c 0x15

0x24 0x54

0 0

0x67 0xda

0x24 0x54 0x7c 0x15

N Y

0x36 0x15

N

0x89 0xa2

N

ld ld st

0 0
0x24 0x54

0 0

0x67 0xda

N

ld ld

(a) (b) (c) (d) (e)

Fig. 11. An example of dynamic redundant load pruning.

=

D Q 0
00
01
10
11

=

D Q 0

OR

...

=

D Q

Same

IDs

Same Target

Addresses

ID &

Target

Address

clk

Redundant

00
01
10
111

0

S/L

Fig. 12. The hardware structure for dynamic redundant load pruning.

If there are two DFI-requests (L, M) of Inmet Ld with
the same ID and target address, and between L and M ,
there is no other DFI-request of Inmet St with the same
target address, nor other DFI-request of Inmet Lib, then,
DFI-request M is redundant. Such a runtime pruning is
enabled with the proposed load pruning buffer, where each
entry is a pair of the target address and ID of an Inmet
Ld. As shown in Fig. 8, the load pruning buffer is added
between the FIFO and the DFI controller. Once there is a
DFI-request output from the FIFO, the load pruning buffer
can decide if this DFI-request is redundant or not.

IEEE TRANSACTIONS ON COMPUTERS 9

An example is shown in Fig. 11, where the large gray
rectangles stand for the load pruning buffer. The ID and
the target address of a new DFI-request is shown at the top
of each subfigure, with st representing Inmet St, and ld
representing Inmet Ld. In Fig. 11(a), the new DFI-request
of Inmet Ld with ID 0x24 and target address 0x54 is sent
from the core, and they are compared with the valid buffer
entries. Since there is no match, the buffer outputs an “N”
to indicate the new DFI-request is not redundant, and its
information is pushed into the buffer as shown in Fig. 11(b).
In Fig. 11(b), the information of another new DFI-request is
simultaneously compared with all the valid buffer entries
with a hit. The buffer outputs “Y” to indicate the DFI-
request is redundant, and the DFI-request is ignored by the
DFI controller. At the same time, the information of this DFI-
request is pushed into the buffer. In Fig. 11(c), the target
address of the DFI-request of Inmet St matches some entries
on target addresses, meaning the corresponding store of
this DFI-request will change the data-flow and become the
most recent definition of the target address. Therefore, the
matched entries are stale and are cleared from the buffer,
as shown in Fig. 11(d). When the buffer is full and there is
another new request, the oldest one is shifted out from the
buffer as shown in Fig. 11(d) to (e). Note that the overflow
does not make any false alarm since this only reduces the
opportunity of pruning redundant DFI processing.

Fig. 12 shows the load pruning buffer design, whose
core part is a shift register-like structure realized by a chain
of D flip-flops (DFFs). Each circle with “=” is a pair of
two comparators, which compare the IDs and the target
addresses, respectively. Each comparator outputs 1 if two
IDs (or two target addresses) are the same. “S/L” equals
0/1 if the input DFI-request’s corresponding instruction is
a store/load. The “S/L” is used as the higher control bit
of the multiplexer. For each pair of comparators, the results
of ID and target address comparison are passed to an AND
gate, and all the results of such AND gates are passed to a
tree of OR gates. If any port Q of the DFFs has the same
ID and target address as the input, the output “Redundant”
would be 1, indicating that it is redundant to verify this DFI-
request, which can be simply dropped. If “S/L” is 1 (for a
load), in each clock cycle, one input can be pushed into the
leftmost DFF and all the other data at port Qs are shifted
right by 1 if the corresponding instruction of the new DFI-
request is load. However, if “S/L” is 0 (for a store), when
the port Q of one DFF has the same target address compared
with the input, this DFF is reset, which is the procedure in
Fig. 11(c)-(d). Otherwise, the DFF remains the same value.

5.4 Dedicated Cache
According to the analysis in the section of experiments,
in Fig. 16, one can observe that most of the performance
overhead of RVDFI is from memory access. Note that in
software-based DFI, most of the performance overhead is
due to DFI checking but not memory access [23]. It is
because RVDFI has moved the DFI checking to RoCC, which
is specialized for DFI verification, thereby greatly reducing
the checking overhead. Therefore, memory access changes
to be the top performance overhead factor.

Although RoCC can access level-1 (L1) Dcache to reduce
the memory access latency, increasing the size of the Dcache

is ineffective, since it can interfere with the memory accesses
of the core and affect performance. Consequently, as shown
in Fig. 8, level-0 (L0) dedicated caches backed by the L1
Dcache are proposed for RoCC to mitigate the Dcache access
contention with the processor core. The effectiveness of our
L0 dedicated caches is shown in Section 6.3, where even
using a larger Dcache still has almost 50% performance
overhead than using the dedicated caches with a much
smaller cache size in total.

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

2 0

4 0

6 0

8 0
 H i t R a t e (%)
 N o r m a l i z e d A c c e s s T i m e

C a c h e l i n e S i z e (B y t e s)

Hit
 Ra

te (
%)

0
2
4
6
8
1 0
1 2
1 4

 No
rm

aliz
ed

Ac
ces

s T
im

e

Fig. 13. The relationship of the dedicated cache’s cacheline size, the
access time, and the hit rate, for SPEC CPU 2006 429.mcf benchmark.

As shown in Fig. 8, we added three caches inside RoCC
for RDTable, RDSmap, and RDSet, respectively. Note that
RDSmap and RDSet cache are read-only since the two pieces
of information are static, while RDTable cache involves
both read and write since it contains dynamic information.
For RDTable cache, write non-allocate and write through
policy is adopted for cache write. The cacheline size of each
dedicated cache is also an important design parameter for
caching performance. We tested the relationship between
the cacheline size, the access time, and the hit rate of
RDTable using the 429.mcf benchmark, when the cache size
is fixed. The results are shown in Fig. 13, and the access
time is normalized to the access time of the 2-byte cacheline
configuration. It is shown that the access time is the least
when the cacheline is 8 bytes, which is the datapath width
between the L0 dedicated caches and the L1 Dcache. The
reason is, if the cacheline size is too small, cache hit rate
can decrease, as shown in Fig. 13. If the cacheline size is
too large, during one cache miss, RoCC needs to access
the Dcache multiple times to fill the cacheline, which can
increase the miss penalty. Therefore, we choose 8 bytes (64
bits) as the cachline size of each dedicated cache.

Besides, since the cacheline of the RDSet cache contains
four 16-bit IDs, DFI checking can be parallelized. When
there is a load, DFI verification needs to perform the com-
parison of the ID of the latest store writing to the loaded
data and the IDs in the load’s RDSet. Instead of reading one
ID each time, RoCC can read 4 IDs and execute 4 compar-
isons in parallel, further reducing performance overhead.

Miss status holding registers (MSHRs) can also help re-
duce performance overhead. Since both the core and RoCC
can access the Dcache, we add MSHRs to the Dcache, which
provides the opportunities for the core (and RoCC) to access
the Dcache when RoCC (and the core) is waiting for the
response from memory under a cache miss in the Dcache.

6 EXPERIMENTAL RESULTS

6.1 Experiment Setup
RVDFI is developed based on the Rocket Chip, which is a
RISC-V based SoC generator [7]. The full system is based

IEEE TRANSACTIONS ON COMPUTERS 10

TABLE 1
Summary of code changes for RVDFI.

Language Lines of Code
Static Analysis Tool C ∼500

Instrumentation Tool Python ∼4800
Linux System C 4
Rocket Chip Chisel ∼1700

on the Freedom project [44]. The 64-bit core of RVDFI has a
5-stage pipeline, with 16KB instruction cache and 16KB data
cache. The memory size of RVDFI is 2GB. The system is pro-
totyped on the HyperSilicon VeriTiger-H4000T FPGA plat-
form with a Xilinx Virtex UltraScale XCVU440FLGA2892
FPGA. We use LLVM [41] for software program compilation
and SVF [42] for static analysis. A summary of code changes
in this work is shown in Table 1.

For security analysis, we use RIPE suite [19], Heartbleed
attack [45], the attack code for Nullhttpd [20] to evaluate
RVDFI. In addition, we use the SPEC CPU2006 benchmark
suite for performance evaluation [24].

6.2 Security Analysis
In this section, we analyze the security of RVDFI. The exper-
iments of control-data attacks, such as return-oriented pro-
gramming (ROP) and jump-oriented programming (JOP)
(indirect branches modification), and non-control-data at-
tacks are discussed.

6.2.1 Control-Data Attacks
RIPE suite [19] is the dominant benchmark of control-data
attacks. As discussed in Section 2.1, control-flow attacks can
also be identified by DFI since these attacks need to modify
the data in the memory. In the experiments, we tested 156
attacks including return-oriented programming (ROP) at-
tacks and jump-oriented programming (JOP) attacks. These
attacks change the targets of the indirect branches (such as
function pointers), or the return address stored on the stack,
to tamper with the control-flow. Results show that RVDFI
can detect all the attacks. Besides, we modified RIPE to
disable the activation of the attacks, and RVDFI does not
report false alarms in this case.

6.2.2 Non-Control-Data Attacks
We also tested two kinds of non-control-data attacks, one is
for data leaks while another is for illegal data modification.

Heartbleed (CVE-2014-0160) [21] is a vulnerability in the
OpenSSL cryptography library. When a message, including
the payload and the length of the payload, is sent to a
server, the server echoes back the message with the claimed
length. However, it does not check if the actual payload
length is the same as the claimed one. As such, an attacker
may send a message claiming a length that is larger than
the actual payload length. Then, the server sends back not
only the original payload but also some additional data,
which might be private sensitive data, to fulfill the claimed
length. Consequently, the sensitive data is stolen by the
attacker. We use the proof-of-concept code based on [45] for
the attack, which is successfully detected by RVDFI as the
data to be loaded for sending back cannot be most recently
written by an instruction not from the sender. An attack-free
transaction, where the actual payload length conforms to the
claimed one, is also tested and no false alarm is reported.

401.bzip2
429.mcf

433.milc

445.gobmk

456.hmmer

458.sje
ng

462.libquantum
470.lbm

473.astar
Avg.

0

20

40

A
ve

ra
ge

 D
FI

 D
et

ec
tio

n
La

te
nc

y
(c

yc
le

)

Fig. 14. The average DFI detection latency of each benchmark.

Nullhttpd is a HTTP server that has a heap overflow
vulnerability (CVE-2002-1496) [20]. If the server receives a
POST request with negative content length L, it should
not process the request. However, the server continues to
process and allocates a buffer of L + 1024 bytes, which is
less than 1024 bytes. Later, the server writes data of 1024
bytes into the buffer, and therefore buffer overflow occurs.
The experiment shows that RVDFI successfully detects such
a buffer overflow. When some load instructions attempt to
access the data written by overflow, it is found that the data
is not written by any instructions in the RDSet of the load
instruction. An experiment is also conducted to confirm that
RVDFI does not produce false alarms in this context.

6.2.3 Detection Latency
Another metric for evaluating security is the detection la-
tency. The latency is defined as the time interval between
the moment each DFI-request containing the DFI checking
task (by Inmet Ld, Inmet Ret or Inmet Lib) is raised and the
moment its processing is finished, excluding the time when
the core is stalled. The latency indicates the cycles that can
be used by the core to execute instructions during the DFI
checking. The results are shown in Fig. 14, which shows
that RVDFI only incurs an average 20-cycle latency. This
is short enough to prevent an effective attack from being
successfully executed before the DFI violation is detected.
Besides, the latency varies across different benchmarks,
which is not directly related to the performance overhead.
These variations are related to the benchmark characteristics
and may result from different memory instruction densities
and different RDSet sizes. Note that RVDFI defends against
software vulnerabilities and enforces DFI for committed in-
structions. The detection window has little to no impact
on transient execution attacks. The execution of the instru-
mented DFI related instructions may in return reduce the
window of transient execution attacks.

6.3 Performance Overhead
Table 2 shows the performance overhead. The baseline
of Columns NR1 and NR2 (Soft-NoMSHR and RVDFI-
NoMSHR) is running the uninstrumented target program
on the unmodified Rocket Chip without MSHR, and the
baseline of Columns 1–9 (Soft-MSHR, Basic-RVDFI, partially
enhanced RVDFI variants and fully enhanced RVDFI) is run-
ning the uninstrumented target program on the unmodified
Rocket Chip with MSHR. The main result of the proposed
RVDFI is at Column 9, with each dedicated cache 8KB,
and 24KB in total. As shown in Column 9, RVDFI only
incurs 17.8% performance overhead, while the previous
complete DFI work based on software implementation at

IEEE TRANSACTIONS ON COMPUTERS 11

TABLE 2
Performance overhead of SPEC CPU 2006 benchmark and hardware resource consumption.

(†The percentage is calculated compared with Column NR1. ‡RDSet, RDSmap, and RDTable caches are implemented.)

Scheme Soft [18] RVDFI Soft [18] Partial RVDFI RVDFI

Scheme Name Soft- RVDFI- Soft- Basic- RVDFI- RVDFI- RVDFI- RVDFI- RVDFI- RVDFI- RVDFINoMSHR NoMSHR MSHR RVDFI FIFO LdPr RDSet RDSmap RDTable 64KB D$
Column ID NR1 NR2 1 2 3 4 5 6 7 8 9

MSHR ×
√

FIFO -
√

- ×
√

× × × ×
√ √

Load Pruning Buffer -
√

- × ×
√

× × ×
√ √

Dedicated Cache -
√‡

- × × × RDSet RDSmap RDTable Dcache
√‡

24KB 8KB 8KB 8KB +48KB 24KB

of LUTs 50025 62376 59163 63676 63927 66293 65692 65515 65858 67315 71059
24.7%† 7.6% 8.1% 12.1% 11.0% 10.7% 11.3% 13.8% 20.1%

of FFs 38571 49853 41981 48373 48047 52993 48394 48373 48388 54349 53209
29.2%† 15.2% 14.4% 26.2% 15.3% 15.2% 15.3% 29.5% 26.7%

of BRAMs 81 81 81 81 81 81 81 81 81 117(44.44%) 81

Be
nc

hm
ar

k

401.bzip2 244.6% 26.8% 235.6% 78.9% 77.1% 75.0% 33.1% 69.5% 69.4% 66.2% 16.2%
429.mcf 130.1% 38.3% 119.0% 29.6% 25.8% 28.2% 22.5% 25.5% 26.4% 10.8% 17.0%
433.milc 264.6% 31.0% 273.3% 212.5% 207.7% 169.1% 73.8% 187.3% 198.9% 101.7% 24.7%

445.gobmk 271.0% 36.3% 276.0% 54.4% 42.6% 53.2% 43.9% 42.0% 46.7% 10.8% 26.9%
456.hmmer 43.3% 3.9% 43.4% 6.1% 6.0% 6.1% 6.2% 5.0% 6.0% 5.8% 3.9%
458.sjeng 181.4% 15.6% 180.2% 28.9% 24.0% 28.4% 23.4% 22.5% 23.5% 2.1% 11.9%

462.libquantum 55.7% 20.1% 54.5% 13.1% 13.8% 13.4% 13.4% 13.4% 13.2% 12.4% 12.9%
470.lbm 113.2% 49.5% 128.5% 36.3% 29.1% 36.4% 34.3% 31.3% 36.1% 19.4% 25.1%
473.astar 150.9% 35.1% 186.0% 31.5% 26.7% 35.5% 33.2% 30.1% 30.6% 11.4% 21.9%
Average 161.6% 28.5% 166.3% 54.6% 50.3% 49.5% 31.5% 47.4% 50.1% 26.7% 17.8%

Column 1 incurs 166.3% overhead, which is more than 9×
compared to RVDFI. The effect of each enhancement is also
investigated. The Basic-RVDFI implementation incurs nearly
55% performance loss (Column 2). With the FIFO introduced
(Column 3), the overhead of RVDFI-FIFO can be reduced
by 4.3 percentage points (pp) of the performance overhead.
Besides, pruning the load instructions at runtime in RVDFI-
LdPr (Column 4) can also reduce more than 5pp of the
performance overhead. When introducing the RDSet cache
in RVDFI-RDSet (Column 5), the overhead is greatly re-
duced to 31.5%, which proves the effectiveness of the RDSet
cache. Similarly, the RDSmap cache enhancement in RVDFI-
RDSmap (Column 6) and the RDTable cache enhancement in
RVDFI-RDTable (Column 7) are able to reduce the overhead
to 47.4% and 50.1%, respectively. The results show that each
individual enhancement (Column 3–7) can effectively re-
duce the performance loss, which results in a low-overhead
design when combining them together for a fully enhanced
RVDFI (Column 9). We also remove the dedicated caches
and barely increase the L1 Dcache size by 48KB (Column 8),
which is 1× larger than the dedicated caches in the complete
RVDFI design (Column 9). Although a larger Dcache is
used, the performance overhead is even 50% worse than
that of RVDFI, which demonstrates the effectiveness of the
proposed dedicated L0 caches. The existence of MSHRs
can also affect the experiment setup of the system and
have impacts on performance, especially for RVDFI that has
both the core and RoCC access L1 Dcache. Therefore, we
separately conduct the experiments with MSHRs enabled
and disabled. The results show that MSHRs do not affect
the performance overhead of software-DFI (Column NR1).
The difference between Column NR1 and Column 1 is
only due to noises, indicated by the marginal variations
of different benchmarks. However, MSHR-enabled RVDFI
(Column 9) can improve the performance compared to its
MSHR-disabled counterpart (RVDFI-NoMSHR in NR2) for
all the benchmarks.This is because the non-blocking Dcache
with MSHRs can eliminate the penalty of subsequent cache
access under miss caused by either the core or RoCC.

401.bzip2
429.mcf

433.milc

445.gobmk

456.hmmer

458.sje
ng

462.libquantum
470.lbm

473.astar
Avg.

0

25

50

75

100

D
FI

 T
im

e
C

os
t B

re
ak

do
w

n
(%

) Update RDTable
Load RDTable

Load RDSmap
Load RDSet and Check

Fig. 15. The percentages of the time cost breakdowns of different DFI
verification steps.

401.bzip2
429.mcf

433.milc

445.gobmk

456.hmmer

458.sje
ng

462.libquantum
470.lbm

473.astar
Avg.

0

25

50

75

100

H
it

R
at

e
(%

)

RDTable Cache RDSmap Cache RDSet Cache

Fig. 16. The cache hit rates of different dedicated caches.

To analyze the cause of the performance overhead of
RVDFI, the DFI verification time of RVDFI with all the
enhancements is broken down and illustrated in Fig. 15.
As shown, although varying from different benchmarks,
most of the time is spent on accessing the RDTable. This
is due to the relatively low hit rate of the RDTable cache as
shown in Fig. 16, where the RDTable cache shows the lowest
hit rate among the dedicated caches with the same cache
size. For some benchmarks, such as 429.mcf, 462.libquantum
and 470.lbm, the hit rates of RDTable cache are lower than
50%. Therefore, RDTable accesses contribute most to the DFI
verification time of RVDFI.

Besides, the time cost breakdowns of the setups with
individual dedicated caches are shown in Fig. 17. Com-
pared with Basic-RVDFI with no dedicated cache, imple-
menting the RDSet cache inside RVDFI can greatly reduce

IEEE TRANSACTIONS ON COMPUTERS 12

 Load RDSmap
 Load RDSet and Check

26.32%

15.78%
33.04%

24.85%

 Update RDTable
 Load RDTable

13.23%

19.33%

39.68%

27.76%

29.73%

5.59%
37.02%

27.66%

With RDSet CacheNo Dedicated Cache

With RDTable CacheWith RDSmap Cache

29.5%

18.76% 24.06%

27.69%

Fig. 17. The percentages of the time cost by different DFI verification
steps of different setups.

4 0 1 . b z i p 2
4 2 9 . m c f

4 3 3 . m i l c
4 4 5 . g o b m k

4 5 6 . h m m e r
4 5 8 . s j e n g
4 6 2 . l i b q u a n t u m

4 7 0 . l b m
4 7 3 . a s t a r A v g .

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0

 S o f t
 R V D F I

Ex
ecu

tab
le B

ina
ry

Siz
e O

ver
hea

d (
%) B i n a r y S i z e O v e r h e a d

0
2 0 0
4 0 0
6 0 0
8 0 0
1 0 0 0
1 2 0 0
1 4 0 0 R D S e t s S i z e

RD
Set

s S
ize

 (K
B)

Fig. 18. The executable binary size overhead and RDSets sizes of
different benchmarks.

the percentage of the time cost on loading RDSet. Besides,
implementing the RDSmap or the RDTable cache can also
reduce the percentage of access time of RDSmap or RDTable,
respectively. However, RDTable access time is the most
challenging one to reduce.

6.4 Hardware Resource and Memory Consumption

The hardware resource consumption is also evaluated and
listed in Table 2. It shows that Basic-RVDFI needs 7.6%
more look-up tables (LUTs) and 15.2% more flip-flops (FFs),
compared with the unmodified Rocket Chip. Each enhance-
ment costs at most around 7,000 LUTs and around 11,000
FFs. The final RVDFI implementation (Column 9) consumes
20.1% more LUTs, 26.7% more FFs. Without MSHR, the LUT
and FF consumption of RVDFI are 62,376 and 49,853, which
is 24.7% and 29.2% more than the original Rocket Chip
without MSHR, respectively.

According to Section 4.2, the memory overhead is 50%
and 25%, when the data is 4-byte and 8-byte aligned, respec-
tively, for complete DFI. Although the memory overhead
is not low, for some security critical applications such as
military and finance applications, memory overhead is less
critical while security is one of the top priorities. Compared
with other complete DFI work [18], [23], RVDFI realizes
much higher performance without more memory overhead.

6.5 Binary Size Overhead and RDSets Size Analysis

Since we instrument the target program for DFI enforce-
ment, the size of the executable binary can increase. Fig. 18
shows the binary size overhead of both software-DFI and

RVDFI. It shows that the binary size overhead of software-
DFI is more than 125% on average while that of RVDFI
is negligible, because the instrumentation of RVDFI only
adds at most 1 instruction for each memory access (or call,
return) instruction, while software-DFI needs much more
computations including comparison, addition, shifting, and
branching. Fig. 18 also depicts the size of the RDSets (in-
cluding the RDSmaps) of each benchmark. The average size
is only around 200KB and the maximum is around 1400KB.

6.6 Comparison with Previous Hardware-based DFI
In this subsection, we compare RVDFI with famous previous
hardware-based DFI enforcement. The comparison is shown
in Table 3, and the details are discussed in the following:

TABLE 3
Comparison with previous hardware-based DFI enforcement.

†The granularity compared with complete DFI.
‡The result is not reported in the corresponding reference.

Method
DFI

Enforcement
Completeness

Performance
Overhead

Hardware Resource
Consumption Memory Overhead

LUT FF 4B aligned 8B aligned

HDFI [9] 1/32768† <2% -‡ -‡ 3.1% 1.6%
TMDFI [22] 1/256† ∼39% -‡ -‡ 25.0% 12.5%

PIM-DFI [23] Complete ∼36% 238,333 39,994 50.0% 25.0%
RVDFI Complete ∼18% 11,896 11,228 50.0% 25.0%

HDFI [9]: Compared with RVDFI, although the perfor-
mance overhead of HDFI is lower (<2%) by using a 1-
bit tag for each data, its security strength is much weaker
and can be easily attacked by the attack model discussed
in work [23]. Since a complete DFI implementation such
as RVDFI uses 16 bits to separate the memory regions, the
memory overhead of HDFI is 1/16 of that of RVDFI, but
the data region protection of RVDFI is 32768× finer-grained
than HDFI.

TMDFI [9]: For TMDFI [22], RVDFI is 256× finer-grained
than TMDFI, since TMDFI can only separate the memory
region into 256 regions. Although TMDFI consumes 1/2
less memory overhead, it incurs a much higher performance
overhead (39%) than RVDFI (18%).

PIM-DFI [23]: For security, both schemes realize com-
plete DFI. However, PIM-DFI has 36.4% performance over-
head while RVDFI only has 17.8% overhead. In terms of
memory usage, both schemes incur the same overhead
as that of software-DFI [18]. PIM-DFI’s most significant
disadvantage is that it requires either a PIM processor or
a normal CPU core, in addition to an extra 238,333 LUTs
and 39,994 FFs overhead when implementing at the same
platform as RVDFI. In contrast, RVDFI only needs 11,896
LUTs and 11,228 FFs to realize DFI verification, which is
a magnitude fewer. Therefore, RVDFI is more efficient in
both performance and hardware resources than PIM-DFI.
Another difference is that PIM-DFI is evaluated using sim-
ulation while RVDFI is a real hardware prototype.

6.7 Sensitive Study
We also studied the detailed effectiveness of each enhance-
ment by varying their sizes. Fig. 19 shows the normalized
performance overhead compared to the baseline, which
is an unmodified Rocket Chip with MSHR (Column 1 in
Table. 2). It shows that by adding the enhancements and
the hardware resources, performance overhead can be mit-
igated. Specifically, increasing the RDSet cache size has the
most positive impact.

IEEE TRANSACTIONS ON COMPUTERS 13

0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5

 0 B 2 5 6 B 8 K B0 B 2 5 6 B 8 K B0 1 6 6 4 0 B 2 5 6 B 8 K B0 1 6 6 4
R D S e t

C a c h e S i z e
R D S m a p
C a c h e S i z e

R D T a b l e
C a c h e S i z e

L o a d P r u n i n g
B u f E n t r i e sF I F O E n t r i e s

No
rm

aliz
ed

Per
for

ma
nce

 Ov
erh

ead

Fig. 19. The effectiveness of the enhancements.

401.bzip2
429.mcf

433.milc

445.gobmk

456.hmmer

458.sje
ng

462.libquantum
470.lbm

473.astar
Avg.

0
5

10
15
20
25
30
35

Lo
ad

 P
ru

ni
ng

 B
uf

 H
it

R
at

e
(%

)

2 Entries 16 Entries 64 Entries 128 Entries

Fig. 20. The load pruning buffer hit rates under different buffer sizes.

For dynamic redundant load pruning, we use “hit rate”
to represent the ratio of the number of the redundant DFI-
requests identified by the load pruning buffer over the
total number of Inmet Ld DFI-requests. The pruning hit
rate increases as the load pruning buffer size increases, as
shown in Fig. 20. After the point where the load pruning
buffer has 64 entries, the hit rate only increases marginally.
Therefore, the load pruning buffer is implemented with 64
entries in the main RVDFI results (Column 9 of Table 2).
Besides, the hit rates vary from benchmark to benchmark.
Although the average hit rate is around 6%, the effectiveness
of the load pruning buffer is relatively higher for some
benchmarks, such as 433.milc and 401.bzip2. Therefore, the
dynamic redundant load pruning can increase the chance to
reduce the performance overhead for certain programs.

7 CONCLUSIONS

In this paper, a secure RISC-V architecture named RVDFI is
proposed, which enables hardware-assisted complete DFI
verification through specialized DFI verification architec-
ture design. The system stacks consisting of compilation,
customized instruction instrumentation, and operating sys-
tem are augmented to enable a secure DFI-capable RISC-
V SoC. In addition, several enhancements are proposed to
improve the security and reduce the performance overhead,
including the DFI request FIFO, the load pruning buffer, the
dedicated DFI caches, etc. The evaluation shows that RVDFI
not only realizes complete DFI that can detect both control-
data and non-control-data attacks, but also is practical due
to its low performance overhead. In summary, RVDFI is the
first RISC-V architecture with complete DFI verification that
incurs only 17.8% performance overhead.

REFERENCES

[1] Verilog to Routing, https://verilogtorouting.org/, 2012.
[2] Icarus Verilog, http://iverilog.icarus.com/, 1998.
[3] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright,

C. Schmidt, J. Zhao, A. Ou, M. Banister, Y. S. Shao, B. Nikolic,
I. Stoica, and K. Asanovic, “Gemmini: An Agile Systolic Array
Generator Enabling Systematic Evaluations of Deep-Learning Ar-
chitectures,” arXiv preprint, 2019.

[4] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From High-Level Deep Neural
Models to FPGAs,” IEEE/ACM International Symposium on Microar-
chitecture, pp. 1–12, 2016.

[5] RISC-V: The Free and Open RISC Instruction Set Architecture,
https://riscv.org/, 2010.

[6] NVDLA, http://nvdla.org/, 2018.
[7] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-

colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman,
“The Rocket Chip Generator,” EECS Department, University of
California, Berkeley, Tech. Rep., 2016.

[8] HammerBlade RISC-V Manycore, https://riscv.org/news/
2020/07/the-hammerblade-risc-v-manycore-a-programmable-
scalable-risc-v-fabric-michael-taylor-and-max-h-ruttenberg-
fosdem/, 2020.

[9] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-Assisted Data-Flow Isolation,” IEEE
Symposium on Security and Privacy, pp. 1–17, 2016.

[10] RISC-V in NVIDIA, https://riscv.org/wp-content/uploads/
2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf, 2017.

[11] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly Cou-
pled RISC-V Accelerators for Post-Quantum Cryptography,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, no. 4, pp. 239–280, 2020.

[12] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: Accelerating Quantized Neural Networks on RISC-V
Processors Through ISA Extensions,” Design, Automation and Test
in Europe Conference, pp. 186–191, 2020.

[13] Y. Zhang, B. Du, L. Zhang, and J. Wu, “Parallel DNN Inference
Framework Leveraging a Compact RISC-V ISA-Based Multi-Core
System,” ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, p. 627–635, 2020.

[14] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and
M. B. Taylor, “The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies
for Fast Chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, 2018.

[15] Intel CET, https://software.intel.com/sites/default/files/
managed/4d/2a/control-flow-enforcement-technology-
preview.pdf, 2019.

[16] AMD Secure Encrypted Virtualization, https://www.amd.com/
en/processors/amd-secure-encrypted-virtualization, 2020.

[17] CoreSight Program Flow Trace, http://infocenter.arm.com/help/
topic/com.arm.doc.ihi0035b/IHI0035B cs pft v1 1 architecture
spec.pdf, 2011.

[18] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforc-
ing Data-Flow Integrity,” Symposium on Operating Systems Design
and Implementation, pp. 147–160, 2006.

[19] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime Intrusion Prevention Evaluator,” Computer Secu-
rity Applications Conference, pp. 41–50, 2011.

[20] Null HTTPd Remote Heap Overflow Vulnerability, https://www.
securityfocus.com/bid/5774.

[21] The Heartbleed Bug, http://heartbleed.com/.
[22] T. Liu, G. Shi, L. Chen, F. Zhang, Y. Yang, and J. Zhang, “TMDFI:

Tagged Memory Assisted for Fine-Grained Data-Flow Integrity
Towards Embedded Systems Against Software Exploitation,”
IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/ IEEE International Conference On
Big Data Science And Engineering, pp. 545–550, 2018.

[23] L. Feng, J. Huang, J. Huang, and J. Hu, “Toward Taming the
Overhead Monster for Data-Flow Integrity,” arXiv preprint, 2021.

[24] SPEC CPU 2006 Benchmark, https://www.spec.org/cpu2006/.
[25] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-

flow Integrity,” ACM Conference on Computer and Communications
Security, pp. 340–353, 2005.

[26] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,”
ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–
372, 2014.

[27] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and

https://verilogtorouting.org/
http://iverilog.icarus.com/
https://riscv.org/
http://nvdla.org/
https://riscv.org/news/2020/07/the-hammerblade-risc-v-manycore-a-programmable-scalable-risc-v-fabric-michael-taylor-and-max-h-ruttenberg-fosdem/
https://riscv.org/news/2020/07/the-hammerblade-risc-v-manycore-a-programmable-scalable-risc-v-fabric-michael-taylor-and-max-h-ruttenberg-fosdem/
https://riscv.org/news/2020/07/the-hammerblade-risc-v-manycore-a-programmable-scalable-risc-v-fabric-michael-taylor-and-max-h-ruttenberg-fosdem/
https://riscv.org/news/2020/07/the-hammerblade-risc-v-manycore-a-programmable-scalable-risc-v-fabric-michael-taylor-and-max-h-ruttenberg-fosdem/
https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
https://www.securityfocus.com/bid/5774
https://www.securityfocus.com/bid/5774
http://heartbleed.com/
https://www.spec.org/cpu2006/

IEEE TRANSACTIONS ON COMPUTERS 14

Y. Yarom, “Spectre Attacks: Exploiting Speculative Execution,”
IEEE Symposium on Security and Privacy, pp. 1–19, 2019.

[28] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet Lightweight Row Hammer Protection,”
IEEE/ACM International Symposium on Microarchitecture, pp. 1–13,
2020.

[29] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible
in the Cache Hierarchy,” IEEE/ACM International Symposium on
Microarchitecture, pp. 428–441, 2018.

[30] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi,
M. Oskin, and M. B. Taylor, “BlackParrot: An Agile Open-Source
RISC-V Multicore for Accelerator SoCs,” IEEE Micro, vol. 40, no. 4,
pp. 93–102, 2020.

[31] RISCV-DV, https://github.com/google/riscv-dv, 2019.
[32] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Pre-

venting Memory Error Exploits with WIT,” IEEE Symposium on
Security and Privacy, pp. 263–277, 2008.

[33] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee, “Enforcing
Kernel Security Invariants with Data Flow Integrity,” Network and
Distributed System Security Symposium, pp. 1–15, 2016.

[34] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding Control Flows
Using Intel Processor Trace,” ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pp. 585–598, 2017.

[35] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, “Using Core-
Sight PTM to Integrate CRA Monitoring IPs in an ARM-Based
SoC,” ACM Transactions on Design Automation of Electronic Systems,
vol. 22, no. 3, pp. 52:1–52:25, 2017.

[36] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie,
S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI:
A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization,” IEEE Symposium on Security and Privacy,
pp. 20–37, 2015.

[37] T. Zhang, D. Lee, and C. Jung, “BOGO: Buy Spatial Memory
Safety, Get Temporal Memory Safety (Almost) Free,” International
Conference on Architectural Support for Programming Languages and
Operating Systems, p. 631–644, 2019.

[38] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap
memory safety,” IEEE/ACM International Symposium on Microar-
chitecture, pp. 1153–1166, 2020.

[39] L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “PHMon: A Programmable Hardware Monitor and Its
Security Use Cases,” USENIX Security Symposium, pp. 807–824,
2020.

[40] N. Joly, S. ElSherei, and S. Amar, “Security Analysis of
CHERI ISA,” https://github.com/microsoft/MSRC-Security-
Research/blob/master/papers/2020/Security%20analysis%
20of%20CHERI%20ISA.pdf, 2020.

[41] LLVM, https://llvm.org/.
[42] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-flow Analysis

in LLVM,” International Conference on Compiler Construction, pp.
265–266, 2016.

[43] H. Shacham, “The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86),” ACM con-
ference on Computer and communications security, pp. 552–561, 2007.

[44] Freedom, https://github.com/sifive/freedom, 2016.
[45] The Source Code for Triggering Heartbleed Bug, https://github.

com/mykter/afl-training/tree/master/challenges/heartbleed.

Lang Feng Lang Feng received his B.E. degree
in electronic science and technology (microelec-
tronic technology) from University of Electronic
Science and Technology of China, Chengdu,
China, in 2016, and his Ph.D. degree in com-
puter engineering from Texas A&M University,
College Station, in 2020. In Nov. 2020, he joined
the School of Electronic Science and Engineer-
ing of Nanjing University, where he is an asso-
ciate research fellow. His research interests are
computer architecture, security, etc.

Jiayi Huang (Member, IEEE) received the BEng
degree in information and communication engi-
neering from Zhejiang University, China, in 2014,
and the PhD degree in computer engineering
from Texas A&M University, in 2020. He is cur-
rently a postdoctoral researcher with the Depart-
ment of Electrical and Computer Engineering,
UC Santa Barbara. His research interests in-
clude computer architecture, computer systems,
and security. He is a member of the ACM and
the IEEE Computer Society.

Luyi Li Luyi Li is currently working towards the
B.E. degree with integrated circuit design and
integrated system from Nanjing University, Nan-
jing, China. His research interests focus on hard-
ware acceleration, computer architecture, secu-
rity, etc.

Haochen Zhang Haochen Zhang is currently
working towards the B.E. degree with integrated
circuit design and integrated system from Nan-
jing University, Nanjing, China. His research in-
terests are computer architecture, security, etc.

Zhongfeng Wang Zhongfeng Wang (Fellow,
IEEE) received both B.E. and M.S. degrees
from Tsinghua University. He obtained the Ph.D.
degree from the University of Minnesota, Min-
neapolis, in 2000. He has been working for
Nanjing University, China, as a Distinguished
Professor since 2016. Previously he worked for
Broadcom Corporation, California, from 2007 to
2016 as a leading VLSI architect. Before that, he
worked for Oregon State University and National
Semiconductor Corporation.

Dr. Wang is a world-recognized expert on Low-Power High-Speed
VLSI Design for Signal Processing Systems. He has published over
200 technical papers with multiple best paper awards received from the
IEEE technical societies. In the current record, he has had many papers
ranking among top 25 most (annually) downloaded manuscripts in IEEE
Trans. on VLSI Systems. In the past, he has served as Associate Editor
for IEEE Trans. on TCAS-I, T-CAS-II, and T-VLSI for many terms.

https://github.com/google/riscv-dv
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://llvm.org/
https://github.com/sifive/freedom
https://github.com/mykter/afl-training/tree/master/challenges/heartbleed
https://github.com/mykter/afl-training/tree/master/challenges/heartbleed

	Introduction
	Preliminaries
	Data-Flow Integrity
	RISC-V Architecture and Motivation
	Threat Model and Assumptions

	Previous Work
	RISC-V Architecture
	DFI Variants
	Control-Flow Integrity
	Hardware-based Memory Protection

	Basic RvDfi Architecture
	DFI Verification Flow
	Static Analysis and RDSets/RDTable Formats
	Information Transmission and Instrumentation
	Transmitting Iid and Itype
	Transmitting Itaddr
	Transmitting Iwid and Irds

	Enhancements on RvDfi System
	Supporting Function Return and Library
	Function Return Protection
	Library Protection
	Instrumentation and Architecture Enhancements

	DFI-Request FIFO
	Dynamic Redundant Load Pruning Buffer
	Dedicated Cache

	Experimental Results
	Experiment Setup
	Security Analysis
	Control-Data Attacks
	Non-Control-Data Attacks
	Detection Latency

	Performance Overhead
	Hardware Resource and Memory Consumption
	Binary Size Overhead and RDSets Size Analysis
	Comparison with Previous Hardware-based DFI
	Sensitive Study

	Conclusions
	References
	Biographies
	Lang Feng
	Jiayi Huang
	Luyi Li
	Haochen Zhang
	Zhongfeng Wang

